

Answer

(1)

The line $\mathrm{x}+2 \mathrm{y}=2$, when $\mathrm{x}=0$ then $\mathrm{y}=1$ and when $\mathrm{x}=2$ then $\mathrm{y}=0$. Then it passes through the points $(0,1),(2,0)$.
The line $-x+3 y=6$, when $x=0$ then $y=2$ and when $x=3$ then $y=3$. Then it passes through the points $(0,2),(3,3)$.
The line $\mathrm{x}-\mathrm{y}=4$, when $\mathrm{x}=0$ then $\mathrm{y}=-4$ and when $\mathrm{x}=4$ then $\mathrm{y}=0$.
Then it passes through the points $(0,-4),(4,0)$.

Then, we determine the feasible domain M of vertices: $A(2,0), B(4,0), C(9,5), D(0,2)$ and $\mathrm{E}(0,1)$, see the figure.
The equation of the objective function $x+2 y=0$, when $x=2$ then $y=-1$. Then it passes through the points $(0,0)$ and $(2,-1)$ and can be traced as in figure.
Since the coefficients of the objective function f are 1 and 2 . Then the point $(1,2)$ lies in the first quarter which is the increasing direction of f. Then, the last point of intersection of the feasible domain M and the objective function f is the vertex $\mathrm{C}(9,5)$ which is the optimal solution. The optimal value of f is 19 .
(2)The standard form of this problem is:
$\operatorname{minimize} f=x-y-z$

$$
\text { s.t } \begin{aligned}
& 2 \mathrm{x}-\mathrm{y}+\mathrm{z}+\mathrm{s}_{1} \quad=4 \\
& \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}+\mathrm{s}_{2}==10 \\
&-\mathrm{x}+\mathrm{y}-\mathrm{z}+\quad \mathrm{s}_{3}=8, \quad \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3} \geq 0
\end{aligned}
$$

The steps of the simplex method goes as follows:

B.V	x	y	z	s 1	s 2	s 3	Solu
S1	2	-1	1	1	0	0	4
s2	1	2	2	0	1	0	10
s3	-1	1	-1	0	0	1	8
f	-1	1	1	0	0	0	0
z	2	-1	1	1	0	0	4
s2	-3	4	0	-2	1	0	2
S3	1	0	0	1	0	1	12
f	-3	2	0	-1	0	0	-4
z	$5 / 4$	0	1	$1 / 2$	$1 / 4$	0	$9 / 2$
y	$-3 / 4$	1	0	$-1 / 2$	$1 / 4$	0	$1 / 2$
s3	1	0	0	1	0	1	12
f	$-3 / 2$	0	0	0	$-1 / 2$	0	-5

This is the optimum case. Then the optimal solution is:
$\left(\mathrm{x}^{*}, \mathrm{y}^{*}, \mathrm{z}^{*}\right)=(0,1 / 2,9 / 2)$ or $(0,5,0)$ with optimal value $\mathrm{f} *=-5$
(3)The standard form of this problem is:
$\operatorname{maximize} \mathrm{f}=\mathrm{x}+\mathrm{y}+\mathrm{z}-\mathrm{u}$
s.t $\mathrm{x}-\mathrm{y}+\mathrm{z}-\mathrm{u}+\mathrm{s} 1 \quad=4$

$$
x+y-z+u-t+v=6, \quad x, y, z, u, s 1, t, v \geq 0
$$

where S 1 are slack variable, t is surplus variable and v is artificial variable.
Let $w=v$. Then, the objective of phase one is:

$$
w+x+y-z+u-t=6
$$

The steps of phase one goes as table:

B.V	x	y	z	u	t	S 1	v	Solu
S 1	1	-1	1	-1	0	1	0	4
v	1	1	-1	1	-1	0	1	6
f	-1	-1	-1	1	0	0	0	0
w	1	1	-1	1	-1	0	0	6
x	1	-1	1	-1	0	1	0	4
V	0	2	-2	2	-1	-1	1	2
f	0	-2	0	0	0	1	0	4
w	0	2	-2	2	-1	-1	0	2
x	1	0	0	0	$-1 / 2$	$1 / 2$	$1 / 2$	5
y	0	1	-1	1	$-1 / 2$	$-1 / 2$	$1 / 2$	1
f	0	0	-2	2	-1	0	1	6
w	0	0	0	0	0	0	-1	0

This is the end of phase one. Phase two starts with the following table which is formed by deleting the column of v and the w-row.

B.V	x	y	z	u	t	S 1	Solu
x	1	0	0	0	$-1 / 2$	$1 / 2$	5
y	0	1	-1	1	$-1 / 2$	$1 / 2$	1
f	0	0	-2	2	-1	0	6

There is no optimal solution because the coefficient of z in f-equation is negative but the pivoting operation can not be cared.
The feasible solution is $(x, y, z, u)=(5,1,0,0)$ with value $\mathrm{f} *=6$.

