Benha University
Faculty of Engineering- Shoubra
Eng. Mathematics & Physics Department

Qualifying Studies (Mathematics)

Final T	`ern	ı E	xam
Date:	1 /	4	/ 2013
Operati	ons	Re	search
Duratio	on:	1	hours

(1)Solve the following LP problems graphically:	15
maximize $f = x + 2y$	

s.t
$$x + 2y \ge 2$$
, $-x + 3y \le 6$, $x - y \le 4$, $x, y \ge 0$

(2) minimize
$$f = x - y - z$$

s.t $2x - y + z \le 4$, $x + 2y + 2z \le 10$, $-x + y - z \le 8$, $x, y, z \ge 0$

(3) maximize
$$f = x + y + z - u$$
 20
s.t $x - y + z - u \le 4$, $x + y - z + u \ge 6$, $x, y, z, u \ge 0$
Good Luck Dr. Mohamed Eid

15

Answer

The line x + 2y = 2, when x = 0 then y = 1 and when x = 2 then y = 0. Then it passes through the points (0, 1), (2, 0).

The line -x + 3y = 6, when x = 0 then y = 2 and when x = 3 then y = 3. Then it passes through the points (0, 2), (3, 3).

The line x - y = 4, when x = 0 then y = -4 and when x = 4 then y = 0.

Then it passes through the points (0, -4), (4, 0).

Then, we determine the feasible domain M of vertices: A(2,0), B(4,0), C(9,5), D(0,2) and E(0,1), see the figure.

The equation of the objective function x + 2y = 0, when x = 2 then y = -1. Then it passes through the points (0, 0) and (2, -1) and can be traced as in figure.

Since the coefficients of the objective function f are 1 and 2. Then the point(1, 2) lies in the first quarter which is the increasing direction of f. Then, the last point of intersection of the feasible domain M and the objective function f is the vertex C(9, 5) which is the optimal solution. The optimal value of f is 19.

(2) The standard form of this problem is:

minimize
$$f = x - y - z$$

s.t $2x - y + z + s_1 = 4$
 $x + 2y + 2z + s_2 = 10$
 $-x + y - z + s_3 = 8$, $x, y, z, s_1, s_2, s_3 \ge 0$

The steps of the simplex method goes as follows:

B.V	X	у	Z	S 1	s2	S 3	Solu
S ₁	2	-1	1	1	0	0	4
s ₂	1	2	2	0	1	0	10
	-1	1	-1	0	0	1	8
S 3							
f	-1	1	1	0	0	0	0
Z	2	-1	1	1	0	0	4
s ₂	-3	4	0	-2	1	0	2
S 3	1	0	0	1	0	1	12
f	-3	2	0	-1	0	0	- 4
Z	5/4	0	1	1/2	1/4	0	9/2
У	-3/4	1	0	-1/2	1/4	0	1/2
S 3	1	0	0	1	0	1	12
f	-3/2	0	0	0	-1/2	0	-5

This is the optimum case. Then the optimal solution is:

$$(x^*, y^*, z^*) = (0, 1/2, 9/2)$$
 or $(0, 5, 0)$ with optimal value $f^* = -5$

(3) The standard form of this problem is:

$$x + y - z + u - t + v = 6$$
, $x, y, z, u, s_1, t, v \ge 0$

where s_1 are slack variable, t is surplus variable and v is artificial variable.

Let w = v. Then, the objective of phase one is:

$$w + x + y - z + u - t = 6$$

The steps of phase one goes as table:

B.V	X	у	Z	u	t	S ₁	V	Solu
S1	1	-1	1	-1	0	1	0	4
v	1	1	-1	1	-1	0	1	6
f	-1	-1	-1	1	0	0	0	0
W	1	1	-1	1	-1	0	0	6
X	1	-1	1	-1	0	1	0	4
V	0	2	-2	2	-1	-1	1	2
f	0	-2	0	0	0	1	0	4
W	0	2	-2	2	-1	-1	0	2
X	1	0	0	0	-1/2	1/2	1/2	5
y	0	1	-1	1	-1/2	-1/2	1/2	1
f	0	0	-2	2	-1	0	1	6
W	0	0	0	0	0	0	-1	0

This is the end of phase one. Phase two starts with the following table which is formed by deleting the column of v and the w-row.

B.V	X	у	Z	u	t	S 1	Solu
X	1	0	0	0	-1/2	1/2	5
У	0	1	-1	1	-1/2	1/2	1
f	0	0	-2	2	-1	0	6

There is no optimal solution because the coefficient of z in f-equation is negative but the pivoting operation can not be cared.

The feasible solution is (x, y, z, u) = (5,1, 0, 0) with value f * = 6.